
Working with Dialog Bar Controls
Introduction

A dialog bar is similar to a tool bar control in that it can either docked to one of the interior sides of the dialog’s
frame or (optionally) floated in its own separate window. Unlike tool bar controls, however, dialog bar controls are
conceived general-purpose container controls and are not dedicated to containing primarily tool bar items.
Furthermore, there are a number of other visual and behavioral differences between tool bar controls and dialog bars,
some of which are discussed below.

A good example of a dialog bar control is the library workspace window in Natural Studio.

Creating a Dialog Bar Control

Dialog bar controls are created in the Dialog Editor in the same way as other standard controls (such as list boxes or
push buttons) are. That is, they are either created statically in the Dialog Editor via the Insert menu or by drag and
drop from the Insert tool bar, or dynamically at run-time by using a PROCESS GUI ACTION ADD statement with
the TYPE attribute set to DIALOGBAR.

Types of Dialog Bar Control

A dialog bar control can exist in one of the following three basic forms (in order of complexity):

1. Neither dockable nor sizeable.
2. Dockable, but not sizeable.
3. Dockable and sizeable.

The dialog bar control is dockable if its DRAGGABLE attribute is set. It is sizeable if the "Dynamic (Y)" STYLE
flag is set.

The following example shows an example of a non-dockable, non-sizeable dialog bar. The edit area on the right fills
the entire client area of the dialog. The dialog bar cannot be dragged by the user and extends to fill the entire length
of the side on which it is positioned:

1Copyright Software AG 2003

Working with Dialog Bar Controls<Untitled>

Setting the "dockable" state in the Dialog Bar Attributes Window in the Dialog Editor causes the window to be
draggable by the user. Note also that the dialog bar no longer extends to occupy the full length of the side to which it
is docked (another dialog bar control or tool bar control could be docked underneath it):

The user can drag the dialog bar control and re-dock it to another side of the owner dialog, or float it in its own
separate window, as shown below:

If the dialog bar control is made sizeable (by checking the "Dynamic (Y)" style flag in the Attributes Window), a
longitudinal splitter bar appears, allowing the dialog bar control to be resized. Note that sizeable dialog bar controls
expand to fill the entire length of the side they are docked to that is not occupied by non-sizeable bars:

Copyright Software AG 20032

<Untitled>Types of Dialog Bar Control

3Copyright Software AG 2003

Types of Dialog Bar Control<Untitled>

If a gripper bar, zoom and close button are added (by setting the "Gripper (g)", "Zoom button (z)" and "Close button
(x)" style flags in the Attributes Window), the dialog bar control takes on the familiar appearance of the control used
to display the Library Workspace in Natural Studio. Note that the zoom button is disabled, because there is no other
sizeable dialog bar control on the same row:

If a second sizeable dialog bar control is added, and docked alongside the first on the same row, a transverse splitter
bar appears allowing the relative sizes of the two dialog bar controls to be changed. Note that the zoom button is now
enabled:

Clicking on the zoom button toggles between the maximized and restored states of a sizeable dialog bar control.
Maximizing a dialog bar control causes the other sizeable dialog bar controls on the same row to be minimized, and
the released space to be taken up by the maximized bar, as shown below:

Copyright Software AG 20034

<Untitled>Types of Dialog Bar Control

Note that the direction of the arrow displayed by the zoom button on the maximized bar has changed direction in
order to indicate that the next time this button is pressed, the bar will be restored, rather than maximized. When a bar
is restored, all sizeable dialog bars on the row revert to their normalized sizes. These are usually the sizes prior to the
maximize operation, unless there has been a change in the visible bars on the row in the meantime (e.g., visible bar
hidden or hidden bar shown, new bar docked on row, etc.).

Note that if the length of a bar on a row is changed via a tranverse splitter bar, all visible bars on the row are
automatically restored.

5Copyright Software AG 2003

Types of Dialog Bar Control<Untitled>

UI Transparency

A dockable dialog bar control may normally be dragged via either its gripper bar (if any) or its background. If the
"UI transparent (T)" style is set, however, the bar may only be dragged via its gripper bar (if any). If such a (sizeable)
bar does not have a gripper bar, resizing of the control is only possible via the splitter bar(s), which may be a
desirable feature in some situations. Additionally, only allowing dragging via the gripper bar helps prevent
unintentional initiation of drag operations.

Client-Size Event

The dialog’s client window is reduced in size to exclude the areas occupied by tool bar, status bar and dialog bar
controls. If a dockable window (tool bar or dialog bar control) is floated, re-docked to another side of the owner
window, or is shown or hidden, the size of the client window can change, even though the exterior dimensions of the
window have not altered. Because the SIZE event is reserved for changes in a dialog’s exterior size, applications
which need to keep track of the size of the client window should instead use the CLIENT-SIZE event for this
purpose. The actual size of the dialog client window can then be determined within this event by means of the
INQ-INNER-RECT action.

Close Button

The close button (if present) hides a dialog bar control rather than closing it, as is also the case for the close button
on floated tool bar controls. It is up to the application to provide a method of re-showing the bar. The next section
provides some code for doing this (amongst other things).

Sample Code

Below is a full listing of an external subroutine that can, in most cases, be used "as-is" in order to allow user control
over the display of tool bars and dialog bars. The code is designed to be powerful enough to cope with MDI
applications, but also works with non-MDI (i.e., SDI) applications.

The subroutine appends the tool and dialog bar captions (STRING attribute) to the dialog’s context menu. If the
dialog does not have a context menu, one is created and assigned to the dialog automatically. It assumes that, in an
MDI application, there are some tool bars and dialog bars that are global (i.e., relevant for all types of MDI child
dialogs) and some which are private (i.e., relevant only for one type of MDI child dialog). For example, in Natural
Studio, the Object tool bar is an example of a global tool bar, whereas the Dialog Editor Options tool bar is private to
the Dialog Editor. When the user switches between MDI child dialogs, the context menu is changed to only show the
global tool bars plus any private tool bars relevant to the currently active dialog. Furthermore, the same private bars
are displayed as the last time this dialog was displayed (if the "Save layout" check box in the Dialog Attributes
window is checked, the subset of bars shown is even retained between sessions).

The subroutine should be called in the AFTER-ANY event handler of the main dialog (i.e., the MDI frame dialog for
MDI applications), as follows (assuming the main dialog’s handle variable name is set to the default value of
#DLG$WINDOW):

PERFORM PROCESS-BAR-COMMANDS #DLG$WINDOW

In addition, the following steps are optional:

1. The bars are listed in the context menu in the order in which they appear in the control sequence. Therefore, you
may wish to re-sequence the tool and dialog bars (e.g., to ensure that the global tool bars are displayed before
the private ones in MDI applications).

2. The code does not insert a separator before the list of available bars on the context menu. Therefore, if you are
already using a context menu for the dialog, you would probably want to ensure that your context menu ends
with a separator.

3. For MDI applications, for each private bar, you should enter the name of the dialog (e.g. "CHILD" if the

Copyright Software AG 20036

<Untitled>UI Transparency

dialog’s file name is CHILD.NS3) to which the tool bar "belongs" into the "Control ID" field of the Attributes
window for the bar in the Dialog Editor. For each global bar, leave this field empty. If you wish the bar to be
displayed only when no MDI child dialog is active, enter the name of the MDI frame dialog here.

4. For MDI applications, you should uncheck the "Enabled" check box in the Attributes window for each bar that
should not be displayed by default.

7Copyright Software AG 2003

Sample Code<Untitled>

DEFINE DATA
PARAMETER
 1 #DIALOG HANDLE OF GUI
LOCAL
 1 #CONTROL HANDLE OF GUI
 1 #ACTIVE-DLG HANDLE OF GUI
 1 #CTXMENU HANDLE OF CONTEXTMENU
 1 #MITEM-DYN HANDLE OF MENUITEM
LOCAL USING NGULKEY1
END-DEFINE
*
DEFINE SUBROUTINE PROCESS-BAR-COMMANDS
 DECIDE ON FIRST *EVENT
 VALUE ’COMMAND-STATUS’
 PERFORM COMMAND-STATUS
 VALUE ’IDLE’
 PERFORM IDLE
 VALUE ’CLICK’
 PERFORM CLICK
 VALUE ’BEFORE-OPEN’
 PERFORM BEFORE-OPEN
 VALUE ’AFTER-OPEN’
 PERFORM AFTER-OPEN
 NONE
 IGNORE
 END-DECIDE
*
 DEFINE SUBROUTINE COMMAND-STATUS
 /* Must enable our commands, otherwise they’re automatically disabled!
 #CTXMENU := #DIALOG.CONTEXT-MENU
 #MITEM-DYN := #CTXMENU.FIRST-CHILD
 REPEAT WHILE #MITEM-DYN <> NULL-HANDLE
 IF #MITEM-DYN.CLIENT-HANDLE <> NULL-HANDLE
 #MITEM-DYN.ENABLED := TRUE
 END-IF
 #MITEM-DYN := #MITEM-DYN.SUCCESSOR
 END-REPEAT
 END-SUBROUTINE
*
 DEFINE SUBROUTINE IDLE
 PERFORM SWITCH-BARS
 END-SUBROUTINE
*
 DEFINE SUBROUTINE CLICK
 #CONTROL := *CONTROL
 IF #CONTROL.TYPE = MENUITEM AND #CONTROL.PARENT = #DIALOG.CONTEXT-MENU
 #MITEM-DYN := #CONTROL
 #CONTROL := #MITEM-DYN.CLIENT-HANDLE
 IF #CONTROL <> NULL-HANDLE
 IF #MITEM-DYN.CHECKED = CHECKED
 #CONTROL.ENABLED := FALSE
 #CONTROL.VISIBLE := FALSE
 ELSE
 #CONTROL.ENABLED := TRUE
 #CONTROL.VISIBLE := TRUE
 END-IF
 END-IF
 END-IF
 END-SUBROUTINE
*
 DEFINE SUBROUTINE BEFORE-OPEN
 #CTXMENU := #DIALOG.CONTEXT-MENU
 #MITEM-DYN := #CTXMENU.FIRST-CHILD
 REPEAT WHILE #MITEM-DYN <> NULL-HANDLE
 IF #MITEM-DYN.CLIENT-HANDLE <> NULL-HANDLE
 #CONTROL := #MITEM-DYN.CLIENT-HANDLE
 IF #CONTROL.VISIBLE
 #MITEM-DYN.CHECKED := CHECKED
 ELSE
 #MITEM-DYN.CHECKED := UNCHECKED
 END-IF
 END-IF
 #MITEM-DYN := #MITEM-DYN.SUCCESSOR
 END-REPEAT
 END-SUBROUTINE
*
 DEFINE SUBROUTINE AFTER-OPEN
 /* for MDI frames, unsuppress IDLE event to track active child change
 IF #DIALOG.TYPE = MDIFRAME
 #DIALOG.SUPPRESS-IDLE-EVENT := NOT-SUPPRESSED
 END-IF
 /* if dialog has no context menu, create one
 #CTXMENU := #DIALOG.CONTEXT-MENU
 IF #CTXMENU = NULL-HANDLE
 PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #CTXMENU
 TYPE = CONTEXTMENU
 PARENT = #DIALOG
 END-PARAMETERS GIVING *ERROR
 #DIALOG.CONTEXT-MENU := #CTXMENU
 END-IF
 /* unsuppress context menu’s BEFORE-OPEN event for item update
 #CTXMENU.SUPPRESS-BEFORE-OPEN-EVENT := NOT-SUPPRESSED
 /* display bars according to context
 PERFORM SWITCH-BARS
 END-SUBROUTINE
*
 DEFINE SUBROUTINE SWITCH-BARS
 IF #DIALOG.TYPE = MDIFRAME
 #ACTIVE-DLG := #DIALOG.ACTIVE-CHILD
 END-IF
 IF #ACTIVE-DLG = NULL-HANDLE
 #ACTIVE-DLG := #DIALOG
 END-IF
 IF #ACTIVE-DLG <> #DIALOG.CLIENT-HANDLE
 #CTXMENU := #DIALOG.CONTEXT-MENU
 IF #CTXMENU <> NULL-HANDLE
 /* Remove any dynamic menu items previously created
 #CONTROL := #CTXMENU.FIRST-CHILD
 REPEAT WHILE #CONTROL <> NULL-HANDLE
 #MITEM-DYN := #CONTROL.SUCCESSOR
 IF #CONTROL.CLIENT-HANDLE <> NULL-HANDLE
 PROCESS GUI ACTION DELETE WITH #CONTROL
 END-IF
 #CONTROL := #MITEM-DYN
 END-REPEAT
 /* Search for all tool bar and dialog bar controls
 #CONTROL := #DIALOG.FOLLOWS
 REPEAT WHILE #CONTROL <> #DIALOG
 IF #CONTROL.TYPE = TOOLBARCTRL OR
 #CONTROL.TYPE = DIALOGBAR
 #CONTROL.CLIENT-KEY := ’CONTROL-ID’
 IF #CONTROL.CLIENT-VALUE = ’ ’ OR
 #CONTROL.CLIENT-VALUE = #ACTIVE-DLG.NAME
 #CONTROL.VISIBLE := #CONTROL.ENABLED
 /* Create menu entry for bar
 PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-DYN
 TYPE = MENUITEM
 PARENT = #CTXMENU
 STRING = #CONTROL.STRING
 SUCCESSOR = #MITEM-DYN
 CLIENT-HANDLE = #CONTROL
 END-PARAMETERS GIVING *ERROR
 ELSE
 #CONTROL.VISIBLE := FALSE
 END-IF
 END-IF
 #CONTROL := #CONTROL.FOLLOWS
 END-REPEAT
 END-IF
 /* Save handle of currently active dialog
 #DIALOG.CLIENT-HANDLE := #ACTIVE-DLG
 END-IF
 END-SUBROUTINE
END-SUBROUTINE
END

Copyright Software AG 20038

<Untitled>Sample Code

Back to Event-Driven Programming Techniques.

9Copyright Software AG 2003

Sample Code<Untitled>

	Working with Dialog Bar Controls
	
	Introduction
	Creating a Dialog Bar Control
	Types of Dialog Bar Control
	UI Transparency
	Client-Size Event
	Close Button
	Sample Code

